Recently I have been using a digital camera in order to perform some scientific measurements on colour (it is a test, and I do not yet know if I will succed in this task). I have carried out some simple tests in order to understand how a digital camera works and I found a peculiar behavior ( to me it seems peculiar, but maybe it is a common known problem).
I have carried out the following test: i have photographed a white paper keeping the aperture fixed and varying exposure times from about 1/8000s to 3s. I have then, transformed my RAW files in .png files and using matlab I have obtained the 'intensity' of each RGB channel for each photo. I have then plotted RGB vs time exposure in a semi log scale, as you can see in figure. untitled..pdf
As you notice there is a region between 100 and 200 on the y scale, where the behavior of the camera is linear, and the three RGB channels have the same slope (I have verified this by making a linear fit).
If now, using the same procedure I take a picture of a coloured object, in my case it was a blue object, I find that, in the linear regime, the three RGB channels have 3 quite different slopes, especially, as you can see in the second figure (only few points are shown) the R channel is much steeper than the green and blue ones. retta..pdf
I was not expecting this result, I was expecting the three channels to have the same slope for each of the 3 RGB and of course different "intensity".
Does someone have an explanation for this behavior? It would be very helpful.