Working (effective) f-number
The f-number describes the light-gathering ability of the lens in the case where the marginal rays on the object side are parallel to the axis of the lens. This case is commonly encountered in photography, where objects being photographed are often far from the camera. When the object is not distant from the lens, however, the image is no longer formed in the lens's focal plane, and the f-number no longer accurately describes the light-gathering ability of the lens or the image-side numerical aperture. In this case, the numerical aperture is related to what is sometimes called the "working f-number" or "effective f-number."
A practical example of this is, that when focusing closer, with e.g. a macro lens, the lens' effective aperture becomes smaller, from e.g. f/22 to f/45, thus affecting the exposure.
The working f-number is defined by modifying the relation above, taking into account the magnification from object to image:
\frac{1}{2 \mathrm{NA_i}} = N_\mathrm{w} = (1-m)\, N,
where N_\mathrm{w} is the working f-number, m is the lens's magnification for an object a particular distance away, and the NA is defined in terms of the angle of the marginal ray as before.[3][5] The magnification here is typically negative; in photography, the factor is sometimes written as 1 + m, where m represents the absolute value of the magnification; in either case, the correction factor is 1 or greater.
The two equalities in the equation above are each taken by various authors as the definition of working f-number, as the cited sources illustrate. They are not necessarily both exact, but are often treated as if they are. The actual situation is more complicated — as Allen R. Greenleaf explains, "Illuminance varies inversely as the square of the distance between the exit pupil of the lens and the position of the plate or film. Because the position of the exit pupil usually is unknown to the user of a lens, the rear conjugate focal distance is used instead; the resultant theoretical error so introduced is insignificant with most types of photographic lenses."[6]
Conversely, the object-side numerical aperture is related to the f-number by way of the magnification (tending to zero for a distant object):
\frac{1}{2 \mathrm{NA_o}} = \frac{m-1}{m}\, N.