Deep learning is a specific approach used for building and training neural networks, which are considered highly promising decision-making nodes. An algorithm is considered to be deep if the input data is passed through a series of nonlinearities or nonlinear transformations before it becomes output. In contrast, most modern machine learning algorithms are considered "shallow" because the input can only go only a few levels of subroutine calling.
Deep learning removes the manual identification of features in data and, instead, relies on whatever training process it has in order to discover the useful patterns in the input examples. This makes training the neural network easier and faster, and it can yield a better result that advances the field of artificial intelligence.