Дифракция и фотография

Дифракция (преломление) — это оптический эффект, который может ограничить детальность вашей фотографии — вне зависимости от того, как много мегапикселей у вашей камеры. Обычно свет в однородной атмосфере распространяется по прямой, однако он начинает рассеиваться, будучи пропущен через маленькое отверстие (такое, как диафрагма объектива). Этим эффектом в норме можно пренебречь, но с уменьшением размера отверстия его сила нарастает. Поскольку фотографы в погоне за повышением резкости закрывают диафрагму, чтобы добиться увеличения глубины резкости, при некоторой диафрагме сглаживающий эффект дифракции превосходит любое улучшение резкости за счёт увеличения её глубины. Когда этот эффект начинает наблюдаться, говорят, что оптика камеры достигла дифракционного предела. Знание этого предела может помочь вам избежать сопутствующего сглаживания и избыточно длинных экспозиций или высоких чисел ISO, требуемых для получения малого отверстия диафрагмы.

Теория

Параллельные лучи света, проходя через малое отверстие, начинают рассеиваться и накладываться друг на друга. Этот эффект становится более заметным по мере уменьшения размера отверстия относительно длины волны проходящего света, но в некоторых количествах он присутствует для любого отверстия или сфокусированного источника света.

Слабая дифракция   Сильная дифракция
Открытая диафрагма   Закрытая диафрагма

Поскольку, расходясь, лучи преодолевают различные расстояния, часть из них оказывается в другой фазе, и в результате лучи начинают накладываться друг на друга — усиливаясь в одних областях и частично или полностью компенсируясь в других. Эта интерференция порождает дифракционный рисунок с пиковыми интенсивностями света в областях, где волны суммируются, и тёмными участками там, где они гасятся. Если измерить интенсивность света в каждой из областей, получатся штрихи следующего вида:

дифракционный рисунок

Для идеально круглого отверстия плоский дифракционный рисунок называется «диском Эйри», в честь его первооткрывателя Джорджа Эйри. Размер кружка рассеивания используется в качестве определения теоретического предела разрешающей способности оптической системы (определяется как диаметр первого тёмного круга).

Диск Эйри Объёмное представление
диск Эйри с кольцами объёмный вид диска Эйри
  Пространственное положение

Когда диаметр центрального пика диска Эйри (кружка рассеивания) становится сравним с размером пикселя камеры (или предельно допустимого кружка нерезкости), он начинает оказывать визуальное влияние на изображение. Иначе, если два диска Эйри оказываются расположены ближе половины их размера, они более не являются различимыми (критерий Рэлея).

диски различимы диски неразличимы
Едва различимы Неразличимы

Таким образом дифракция задаёт фундаментальный предел разрешающей способности, который не зависит от числа мегапикселей или формата плёнки. Он зависит исключительно от f-ступени диафрагмы объектива и длины волны изображаемого света. Можно рассматривать этот предел как наименьший теоретический «пиксель» детальности снимка. Даже если два пика всё ещё могут быть различимы, закрытие диафрагмы может также значительно понизить мелкодетальный контраст в связи с частичным перекрытием вторичного и прочих колец вокруг кружка рассеивания (см. пример фото).

Визуальный пример: диафрагма и размер пикселя

Размер кружка рассеивания сам по себе полезен только в контексте глубины резкости и размера пикселя. Следующая интерактивная таблица показывает кружок рассеивания в матрице, которая отражает размер пикселя различных моделей камер (наведение курсора на название меняет матрицу).

Диафрагма Тип камеры Размер пикселя
f/2.0 Canon EOS 1D 136 мкм2
f/2.8 Canon EOS 1Ds 77.6 мкм2
f/4.0 Canon EOS 1DMkII / 5D 67.1 мкм2
f/5.6 Nikon D70 61.1 мкм2
f/8.0 Canon EOS 10D 54.6 мкм2
f/11 Canon EOS 1DsMkII 52.0 мкм2
f/16 Canon EOS 20D / 350D 41.2 мкм2
f/22 Nikon D2X 30.9 мкм2
f/32 Canon PowerShot G6 5.46 мкм2

Вспомните, что сенсор цифровой камеры на базе матрицы Байера в каждом из пикселей получает только один из первичных цветов, а затем интерполирует эти цвета, чтобы получить итоговое полноцветное изображение. В результате работы сглаживающего фильтра сенсора (и вышеописанного критерия Рэлея) диск Эйри может иметь диаметр порядка двух пикселей, прежде чем дифракция начнёт оказывать визуальное влияние (предполагая идеальный в остальном объектив и просмотр в масштабе 100%).

В качестве двух примеров, Canon EOS 20D начнёт показывать дифракцию примерно при f/11, тогда как Canon PowerShot G6 (компактная камера) начнёт проявлять её эффекты уже при f/4.0-5.6. С другой стороны, Canon G6 не требует диафрагм настолько малых, как 20D, для получения аналогичной глубины резкости (для заданного угла обзора) в силу намного меньшего размера сенсора (подробнее об этом позже).

Поскольку размер диска Эйри зависит также от длины волны света, каждый из трёх первичных цветов достигнет своего дифракционного предела при разных отверстиях диафрагмы. Вышеприведенный расчёт принимает за длину волны света середину видимого спектра (~510 нм). Типичные цифровые зеркальные камеры способны зафиксировать свет с длинами волн от 450 до 680 нм, так что в лучшем случае диск Эйри будет иметь диаметр 80% от вышеприведенного размера (для чистого синего света).

Ещё одна сложность состоит в том, что матрица Байера отводит удвоенное число пикселей под зелёный цвет по сравнению с красным и синим. Это означает, что при достижении дифракционного предела в первую очередь произойдёт потеря разрешения в зелёном и в попиксельной яркости. Для потери разрешения в результате дифракции в синем потребуется минимальная диафрагма (максимальное число f-ступени).

Технические замечания:
  • В действительности пиксели не занимают 100% площади сенсора цифровой камеры, между ними есть зазоры. Настоящий расчёт подразумевает, что микролинзы достаточно эффективны, так что эти зазоры можно игнорировать.
  • Цифровые зеркальные камеры Nikon имеют пиксели прямоугольной формы, и следовательно, потеря разрешения в результате дифракции может быть более заметна в одном направлении. Этот эффект обычно визуально незаметен и сказывается толко при использовании высокоточных измерительных программ.
  • Вышеприведенная таблица принимает за отверстие диафрагмы круг, хотя в действительности оно представляет из себя многоугольник, у которого 5-8 сторон (распространённое приближение).
  • Наконец, расчёт площади пикселя подразумевает, что пиксели распространяются вплоть до границы каждого сенсора, и что все они вносят свой вклад в итоговое изображение. В действительности производители камер оставляют на границе каждого из сенсоров неиспользуемые пиксели. Поскольку не все производители предоставляют информацию о количестве используемых и неиспользуемых пикселей, в расчёт брались только используемые пиксели. Таким образом показанные выше размеры пикселей несколько больше настоящих (но не более, чем на 5% в худшем случае).

Как это выглядит

Вышеприведенные расчёты и диаграммы весьма полезны для получения представления о таком явлении, как дифракция, однако показать её визуальное влияние может показать только фотография из жизни. Следующая серия снимков сделана с помощью Canon EOS 20D, на котором дифракционный предел начинает сказываться, начиная с f/11 (как показано выше). Наведите курсор на каждую из f-ступеней и проследите изменения в текстуре ткани.

 
Без наложения дисков Эйри
Выберите диафрагму: f/8.0 f/11 f/16 f/22   Частичное перекрытие дисков Эйри

Обратите внимание, как большинство линий ткани всё ещё различимы при f/11, но уже наблюдается снижение мелкодетального контраста или чёткости (в частности там, где полосы расположены очень близко). Происходит это вследствие частичного перекрытия дисков Эйри, аналогично тому, как эффект проявляется на смежных полосах чёрного и белого (как показано справа). При диафрагме f/22 практически все мелкие детали оказались размыты, поскольку кружок рассеивания превзошёл их по величине.

Расчёт дифракционного предела

Нижеприведенная форма осуществляет расчёт размера кружка рассеивания и оценивает подверженность системы дифракционному пределу. Необязательные поля обозначены тёмно-серым и позволяют задать собственный кружок нерезкости (КН).

Калькулятор дифракционного предела
 Печатный размер
Расстояние просмотра
Зрение
 Разрешение Мегапикселей
Тип камеры
Диафрагма
Кружок нерезкости = удвоенный пиксель?
Размер пикселя (мкм)
Максимальный кружок нерезкости (мкм)
Диаметр диска Эйри (мкм)
Дифракционный предел?

Примечание: кроп-фактор обычно называют множителем фокусного расстояния;
подразумеваются квадратные пиксели, соотношение сторон 4:3 для компактных
и 3:2 для зеркальных камер

Данный калькулятор считает систему достигшей дифракционного предела, когда диаметр диска Эйри превышает диаметр кружка нерезкости. За подробным объяснением каждого из входных параметров обратитесь к усовершенствованному калькулятору ГРИП.

Возможность приравнять КН к удвоенному размеру пикселя даёт вам представление о том, когда дифракция становится заметна при просмотре цифрового изображения на экране компьютера в масштабе 100%. Следует понимать, что «двойной пиксель» является абсолютным пределом, и в действительности существует плавный переход между незаметной и заметной дифракцией в масштабе 100%. В действительности результаты будут также зависеть от используемого объектива, так что данный предел достижим только для наиболее резких объективов.

Замечания по применимости в практической фотографии

Даже когда ваша оптическая система достигла дифракционного предела или даже превысила его, другие факторы, такие как точность фокусировки, размытие движением (шевелёнка) и несовершенные объективы могут оказать намного большее влияние. Размытие вследствие дифракции становится ограничивающим фактором для общей резкости только при использовании стабильного штатива, поднятия зеркала и высококачественного объектива.

Зачастую небольшая дифракция допустима, если вы хотите пожертвовать избыточной резкостью в фокальной плоскости в обмен на несколько лучшую резкость на границах глубины резкости. Иначе, чрезвычайно малые диафрагмы могут потребоваться для получения длинной выдержки, где это необходимо, например чтобы создать размытие текущей воды движением, снимая водопад.

Было бы неверно приходить к выводу, что «чем шире диафрагма, тем лучше», просто потому что сильно закрытые диафрагмы вносят мягкость в изображение. Большинство объективов не менее мягкие на предельно открытой диафрагме, так что оптимальная диафрагма всегда будет где-то между наибольшим и наименьшим значениями — обычно недалеко от дифракционного предела, в зависимости от объектива. Иначе говоря, оптимальная резкость для некоторых объективов может не достигать дифракционного предела. Данные расчёты показывают только, когда дифракция становится значительной, но необязательно положение оптимальной резкости (хотя они часто совпадают).

Чем меньше пиксель, тем хуже? Необязательно. Просто потому, что дифракционный предел был достигнут для большого пикселя, итоговый снимок не станет хуже из-за того, что пиксели были меньше, и предел был превышен; в каждом из случаев итоговое полученное разрешение будет одинаковым (хотя во втором случае размер файла будет больше). И даже несмотря на то, что разрешающая способность будет одинаковой, камера с меньшим размером пикселей отобразит фото с меньшим количеством дефектов (таких, как цветной муар и ступенчатость). Меньший размер пикселя даст к тому же возможность иметь лучшее разрешение при больших диафрагмах в ситуациях, когда глубину резкости можно сократить. Если учитывать прочие факторы, такие как визуальный шум и глубину резкости, ответ на вопрос, какой размер пикселя лучше, становится ещё более сложным.

Техническое примечание: поскольку физический размер диафрагмы объектива больше у телеобъективов (f/22 даёт большее отверстие при 200 мм, чем при 50 мм), почему размер диска Эйри не зависит от фокусного расстояния? Это происходит потому, что расстояние до фокальной плоскости с увеличением фокусного расстояния также увеличивается, так что диск Эйри на этом увеличенном расстоянии рассеивается сильнее. В результате два эффекта физического размера диафрагмы и фокусного расстояния взаимоисключаются. Следовательно, размер кружка рассеивания зависит только от f-ступени, которая описывает как фокусное расстояние, так и размер отверстия диафрагмы. Этот термин используется для универсального описания «числовой апертуры» (обратной удвоенной f-ступени). Существуют некоторые вариации от объектива к объективу, но они вызваны преимущественно различным дизайном и расстоянием между фокальной плоскостью и «входным отверстием» диафрагмы.

- Back to Photography Tutorials -